
PROTOTYPING

EMBEDDED

DEVICES

ELECTRONICS:
• When it comes to thinking about the electronics, it’s useful to split

them into two main categories:

Sensors: Sensors are the ways of getting information into your

device, finding out things about your surroundings.

Actuators: Actuators are the outputs for the device—the

motors, lights, and so on, which let your device do something

to the outside world.

• Digital I/O, which has only two states: a button can either be

pressed or not; or an LED can be on or off.

• These states are connected via general-purpose input/output

(GPIO) pins and map a digital 0 in the processor to 0 volts(Reset)

in the circuit and the digital 1 to a set voltage(commonly 5V or 3.3V)

•

• If you want a more nuanced connection than just on/off, you need

an analogue signal.

• If you want to run a motor at a speed other than off or full-speed,

you need to feed it with a voltage somewhere between 0V and its

maximum rating.

• Because computers are purely digital devices, you need a way to

translate between the analogue voltages in the real world and the

digital of the computer.

• An analogue-to-digital converter (ADC) lets you measure varying

voltages.

• They will convert the voltage level between 0V and a predefined

maximum into a number, depending on the accuracy of the ADC.

• The flipside of an ADC is a DAC, or digital-to-analogue converter.

• DACs let you generate varying voltages from a digital value.

SENSORS

• Pushbuttons and switches, which are probably the simplest

sensors, allow some user input.

• Sensing the environment is another easy option.

• Light-dependent resistors (LDRs) allow measurement of

ambient light levels, temperature sensors allow you to know how

warm it is, and sensors to measure humidity or moisture levels are

easy to build.

• Microphones obviously let you monitor sounds and audio.

• Distance-sensing modules, which work by bouncing either an

infrared or ultrasonic signal off objects, are readily available.

ACTUATORS

• One of the simplest and yet most useful actuators is light, because it

is easy to create electronically and gives an obvious output.

• Light-emitting diodes (LEDs) typically come in red and green but also

white and other colours.

• More complicated visual outputs also are available, such as LCD

screens to display text or even simple graphics.

• You can wire up outputs to speakers to create more complicated

synthesised sounds.

• Stepper motors can be moved in steps, usually a fixed number of steps

perform a full rotation.

• DC motors simply move at a given speed when told to.

• Both types of motor can be one-directional or move in both directions.

SCALING UP THE ELECTRONICS

• • From the perspective of the electronics, the starting point for

prototyping is usually a “breadboard”.

SCALING UP THE ELECTRONICS
• • it’s common to solder the components onto some protoboard

(Stripboard), which may be sufficient to make the circuit more

permanent.

SCALING UP THE ELECTRONICS
• • Moving beyond the protoboard (stripboard) option tends to

involve learning how to layout a PCB.

EMBEDDED COMPUTING BASICS
MICROCONTROLLERS:

• • It combines the processor, RAM, and storage onto a single chip, which

means they are much more specialised, smaller and also easier to build

into a custom design.

• • Microcontrollers are very limited in their capabilities.

• • Usually, they offer RAM capabilities measured in kilobytes and storage in

the tens of kilobytes.

• • The modern chips are much smaller, require less power, and run about

five times faster than their 1980s counterparts.

• • Few examples include Atmel, Microchip, NXP, Texas Instruments, etc..

• • The devices using them are focused on performing one task.

SYSTEM-ON-CHIPS:
• In between the low-end microcontroller and a full-blown PC is the SoC.

• They combine a processor and a number of peripherals onto a single

chip but usually have more capabilities.

• The processors usually range from a few hundred megahertz to the

gigahertz.

• RAM measured in megabytes rather than kilobytes.

• Storage for SoC modules tends not to be included on the chip, with SD

cards being a popular solution.

• The greater capabilities of SoC mean that they need some sort of operating

system to marshal their resources.

• A wide selection of embedded operating systems, both closed and open

source, is available and from both specialised embedded providers and the

big OS players, such as Microsoft and Linux.

CHOOSING YOUR PLATFORM:

Processor Speed
• The processor speed, or clock speed  How fast it can process the

individual instructions in the machine code for the program it’s running.

• Some processors may lack hardware support for floating-point

calculations, so if the code involves a lot of complicated mathematics,

slower processor with hardware floating-point support could be faster

than a slightly higher performance processor without it.

• Microcontrollers tend to be clocked at speeds in the tens of MHz,

whereas SoCs run at hundreds of MHz or possibly low GHz.

• If your project doesn’t require heavyweight processing then some sort

of microcontroller will be fast enough.

• If your device will be crunching lots of data(ex: processing video in real

time) then you’ll be looking at a SoC platform.

CHOOSING YOUR PLATFORM:

RAM

• • RAM provides the working memory for the system.

• • If you have more RAM, you may be able to do more things or have

more flexibility over your choice of coding algorithm.

• • It is difficult to give exact guidelines to the amount of RAM you will

need, as it will vary from project to project.

• • However, microcontrollers with less than 1KB of RAM are unlikely

to be of interest, and if you want to run standard encryption

protocols, you will need at least 4KB, and preferably more.

• • For SoC boards, particularly if you plan to run Linux as the

operating system, we recommend at least 256MB.

CHOOSING YOUR PLATFORM:
Networking

• How your device connects to the rest of the world is a key consideration

for Internet of Things products.

• Wired Ethernet is often the simplest for the user—generally plug and

play—and cheapest, but it requires a physical cable.

• Wireless solutions obviously avoid that requirement but introduce a more

complicated configuration.

• WiFi is the most widely deployed to provide an existing infrastructure for

connections, but it can be more expensive and less optimized for power

consumption than some of its competitors.

CHOOSING YOUR PLATFORM:

USB

• If your device can rely on a more powerful computer being nearby,

tethering to it via USB can be an easy way to provide both power and

networking.

• You can buy some of the microcontrollers in versions which include

support for USB.

• Instead of the microcontroller presenting itself as a device, some can

also act as the USB “host”.

CHOOSING YOUR PLATFORM:
Power Consumption

• Faster processors are often more power hungry than slower ones.

• For devices which might be portable or rely on an unconventional

power supply (batteries, solar power) depending on where they are

installed, power consumption may be an issue.

• However, processors may have a minimal power-consumption sleep

mode.

• This mode may allow you to use a faster processor to quickly

perform operations and then return to low-power sleep.

CHOOSING YOUR PLATFORM:

Interfacing with Sensors and Other Circuitry

• In addition to talking to the Internet, your device needs to interact with

something else—either

• sensors to gather data about its environment;

• Or motors, LEDs, screens, and so on, to provide output.

• You could connect to the circuitry through some sort of peripheral

bus—SPI and I2C being common ones—

• or through ADC or DAC modules to read or write varying voltages;

• or through generic GPIO pins, which provide digital on/off inputs or

outputs.

Physical Size and Form Factor

• Nowadays, the size is governed by the number of connections it needs to

make to the surrounding components on the PCB.

• The limit to the size that each connection can be reduced to is then

governed by the capabilities and tolerances of your manufacturing

process.

• Some surface-mount designs are big enough for home-etched PCBs and

can be handsoldered.

• Due to these trade-offs in size versus manufacturing complexity, many

chip designs are available in a number of different form factors, known as

packages.

ARDUINO
• The Arduino team’s focus on simplicity rather than raw performance

• The Uno features an ATmega328 microcontroller and a USB socket for

connection to a computer.

• It has 32KB of storage and 2KB of RAM

• The Uno also provides 14 GPIO pins.

• Arduino Mega 2560 provides 256KB of Flash storage, 8KB of RAM, three

more serial ports, a massive 54 GPIO pins.

• the more recent Arduino Due has a 32-bit ARM core microcontroller.

• Its specs are similar to the Mega’s, although it ups the RAM to 96KB.

DEVELOPING ON THE ARDUINO

• Using a single USB cable, you can not only power the board but also

push your code onto it, and (if needed) communicate with it

• For example, for debugging or to use the computer to store data

retrieved by the sensors connected to the Arduino.

Integrated Development Environment

• You usually develop against the Arduino using the integrated

development environment (IDE) that the team supply at http://arduino.cc.

• Most Arduino projects consist of a single file of code, so you can think of

the IDE mostly as a simple file editor.

• The controls that you use the most are those to check the code (by

compiling it) or to push code to the board

http://arduino.cc/

Pushing Code

• Connecting to the board should be relatively straightforward via a USB

cable.

• Sometimes you might have issues with the drivers or with

permissions on the USB port.

• You need to choose the correct serial port and the board type (look

carefully at the labelling on your board and its CPU to determine which

option to select).

• When your setup is correct, the process of pushing code is generally

simple:

• first, the code is checked and compiled, with any compilation errors

reported to you.

• If the code compiles successfully, it gets transferred to the Arduino and

stored in its flash memory.

• At this point, the Arduino reboots and starts running the new code.

Operating System

• The Arduino doesn’t, by default, run an OS as such, only the bootloader,

which simplifies the code-pushing process described previously.

• When you switch on the board, it simply runs the code that you have

compiled until the board is switched off again.

• It is, however, possible to upload an OS to the Arduino, usually a

lightweight real-time operating system (RTOS).

• The main advantage of one of these operating systems is their built-in

support for multitasking.

• It is even possible to compile code without using the IDE but by using the

toolset for the Arduino’s chip—for example the avr-gcc toolset.

• The avr-gcc toolset (www.nongnu.org/avr-libc/) is the collection of

programs that let you compile code to run on the AVR chips.

Language

• The language usually used for Arduino is a slightly modified version of

C++.

• It includes some libraries used to read and write data from the I/O pins

provided on the Arduino and to do some basic handling for “interrupts”.

• The code needs to provide only two routines:

◾ setup(): • This routine is run once when the board first boots.

• You could use it to set the modes of I/O pins to input or output or to prepare a data

structure which will be used throughout the program.

◾ loop(): • This routine is run repeatedly in a tight loop while the Arduino is

switched on.

RASPBERRY PI

• The Raspberry Pi, unlike the Arduino, wasn’t designed for physical

computing at all, but rather, for education.

• • Uses Broadcom BCM2835 system-on-chip, powerful graphics

processing unit (GPU), capable of high-definition video and fast

graphics rendering.

• • the Raspberry Pi is effectively a computer that can run a real,

modern operating system, communicate with a keyboard and

mouse, talk to the Internet, and drive a TV/monitor with high-

resolution graphics.

DEVELOPING ON THE

RASPBERRY PI

Operating System

• Although many operating systems can run on the Pi, we recommend

using a popular Linux distribution, such as

Raspbian:

• Released by the Raspbian Pi Foundation, It is based on Debian.

• This is the default “official” distribution and is certainly a good

choice for general work with a Pi.

Programming Language

• One choice to be made is which programming language and

environment you want to use.

• Python is a good language for educational programming (and indeed

the name “Pi” comes initially from Python).

Contrast Python with C++

• Python, as with most high-level languages, compiles to relatively

large (in terms of memory usage) and slow code, compared to

C++.

• Python handles memory management automatically.

• Linux itself arguably has some issues for “real-time” use.

• An Arduino runs only the one set of instructions, in a tight loop,

until it is turned off or crashes.

